4,253 research outputs found

    Rationale behind the responses of monetary policy to the real exchange rate in small open economies

    Get PDF
    We estimate how monetary policy works in small open economies. To do so, we build a dynamic stochastic general equilibrium model that incorporates the basic features of these economies. We conclude that the monetary policy in a group of small open economies (including Australia, Chile, Colombia, Peru and New Zealand) is rather similar to that observed in developed countries. Nevertheless, our results also indicate that there are strong differences due to shocks from the international financial markets (risk premium shocks, mainly) that explain mostly the variability of the real exchange rate, which has important reallocation effects in the short run. In addition, we find that in practice central banks do not face any trade-off responding to these shocks through changes in the interest rate. This result is consistent with the fact that in each country under study, the exchange rate must be included in the policy reaction function.small open economy models; monetary policy rules; exchange rates; Bayesian econometrics

    A chiral route to spontaneous entanglement generation

    Full text link
    We study the generation of spontaneous entanglement between two qubits chirally coupled to a waveguide. The maximum achievable concurrence is demonstrated to increase by a factor of 4/e1.54/e \sim 1.5 as compared to the non-chiral coupling situation. The proposed entanglement scheme is shown to be robust against variation of the qubit properties such as detuning and separation, which are critical in the non-chiral case. This result relaxes the restrictive requirements of the non-chiral situation, paving the way towards a realistic implementation. Our results demonstrate the potential of chiral waveguides for quantum entanglement protocols.Comment: 5 pages + 1 page supplemental, 4 figure

    Frontoparietal action-oriented codes support novel task set implementation

    Get PDF
    A key aspect of human cognitive flexibility concerns the ability to rapidly convert complex symbolic instructions into novel behaviors. Previous research proposes that this fast configuration is supported by two differentiated neurocognitive states, namely, an initial declarative maintenance of task knowledge, and a progressive transformation into a pragmatic, action-oriented state necessary for optimal task execution. Furthermore, current models predict a crucial role of frontal and parietal brain regions in this transformation. However, direct evidence for such frontoparietal formatting of novel task representations is still lacking. Here, we report the results of an fMRI experiment in which participants had to execute novel instructed stimulus-response associations. We then used a multivariate pattern-tracking procedure to quantify the degree of neural activation of instructions in declarative and procedural representational formats. This analysis revealed, for the first time, format-unique representations of relevant task sets in frontoparietal areas, prior to execution. Critically, the degree of procedural (but not declarative) activation predicted subsequent behavioral performance. Our results shed light on current debates on the architecture of cognitive control and working memory systems, suggesting a contribution of frontoparietal regions to output gating mechanisms that drive behavior

    Characterization of nanoparticles generated in reacting flows

    Get PDF
    In this thesis, particle formation in reacting flows is investigated experimentally. Two separate systems are considered. First, silica particle synthesis is characterized in a cold, turbulent jet doped with trace amounts of silane gas that issues into a vitiated co-flow. Additionally, soot formation is characterized in a laminar ethylene diffusion flame. Laser diagnostic techniques are the cornerstone of this work and make it possible to perform measurements with minimal disruption to the system. In both scenarios, elastic light scattering (ELS) and OH-PLIF are employed to obtain experimental signals that contain information about temperature, particle formation, OH concentration and other physical quantities. Additionally, line-of-sight extinction is used in the soot-forming system to recover integrated soot volume fraction profiles and multi-angle light scattering (MALS) is demonstrated on the silica-forming system to obtain in-situ information about particle size. Laser-based datasets are supplemented by probe measurements, including temperature profiles measured using radiation-corrected thermocouples and TEM analysis of particle samples obtained by location-specific thermophoretic sampling. Fully-defined numerical models, available in both scenarios, are validated following an unconventional approach based on the comparison of “predicted signals” with experimentally-obtained signals, as a means to avoid introducing additional assumptions. Satisfactory agreement is found, even though some discrepancies remain concerning silica particle formation, which are likely related to uncertainties in precursor chemistry and nucleation. Nevertheless, this is one of a few joint numerical and experimental studies that address particle formation under turbulent conditions. Regarding soot formation in laminar flames, a consistent underprediction of soot formation on the centreline is identified, which is believed to be a limitation of the acetylene-based model. In summary, this work uses optical diagnostic techniques to generate extensive datasets of particle-forming reacting jets, making a major contribution towards the validation of computational tools to predict particle formation in turbulent reacting flows as well as soot formation in laminar flames.Open Acces

    Didactic strategies for comprehension and learning of structural concepts

    Full text link
    p. 926-937In previous papers we have established the convenience of formulating educational strategies at the university level for both disciplines: Civil Engineering and Architecture, which involves academic topics of mutual interest by means of shared practices. As a particular matter of this approach, the application of physical experimental models is considered of special usefulness, in order to understand in better ways the performance of materials and structural systems. Several strategies of selection and development of such physical models will be discussed in this work, considering as a first step, the establishment of its correspondence with the different levels of structural complexity studied in curriculum plan: statics, strength of materials and structural design, among others. This task constitutes a part of the work program of the Laboratory of Structural Models, which is an academic project that develops and applies different didactic prototypes to structure courses in the Universidad Autónoma Metropolitana, campus Azcapotzalco, in Mexico City, project we have already presented in recent forums. Two different modes of application are implemented in classroom sessions and in structures workshop: the devices for functional demonstration of typical cases of structural work as well as the experimentation with student's own designs of destructible models where certain typologies are tested up to its failure limit. The first one allows teachers to explain adequately the theoretical principles and formulas (that usually are expressed on the blackboard) by means of didactic models identified in accordance to specific cases of the curriculum on variable level of complexity. This kind of practice allows the students of architecture and civil engineering to realize in better ways the possibilities of use and application of the different structural typologies. Such experimental models are part of more than fifty devices of the Laboratory's catalog. In the same sense, the possibility of observation of structural work of their own architectural designs, allows future professionals to achieve a better conception of the structural solutions that affect positively their designs. Based on specific predefined guides, the students develop their own architectural-structural projects and subject them to diverse loads, observing their behavior under the influence of variable stresses leading up the experiment to its last resistance. From both experiences a significant learning is obtained for the student's formation and training, who will be capable in his future professional work to use better tools of comprehension of the structural concepts applied to architecture as well as of increasing his conscience of the benefits and convenience of multidisciplinary work.Moreno, C.; Abad, A.; Gerdingh, JG.; Garcia M., C.; Gonzalez C., O. (2010). Didactic strategies for comprehension and learning of structural concepts. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/695

    Solar Neutrinos Before and After Neutrino 2004

    Get PDF
    We compare, using a three neutrino analysis, the allowed neutrino oscillation parameters and solar neutrino fluxes determined by the experimental data available Before and After Neutrino 2004. New data available after Neutrino2004 include refined KamLAND and gallium measurements. We use six different approaches to analyzing the KamLAND data. We present detailed results using all the available neutrino and anti-neutrino data for Delta m^2_{12}, tan^2 theta_{12}, sin^2 theta_{13}, and sin^2 eta (sterile fraction). Using the same complete data sets, we also present Before and After determinations of all the solar neutrino fluxes, which are treated as free parameters, an upper limit to the luminosity fraction associated with CNO neutrinos, and the predicted rate for a 7Be solar neutrino experiment. The 1 sigma (3 sigma) allowed range of Delta m^2_{21} = (8.2 +- 0.3) (^+1.0_-0.8)times 10^{-5} eV^2 is decreased by a factor of 1.7 (5), but the allowed ranges of all other neutrino oscillation parameters and neutrino fluxes are not significantly changed. Maximal mixing is disfavored at 5.8 sigma and the bound on the mixing angle theta_{13} is slightly improved to sin^2 theta_{13}<0.048 at 3 sigma. The predicted rate in a 7Be neutrino-electron scattering experiment is (0.665 +-0.015) of the rate implied by the BP04 solar model in the absence of neutrino oscillations. The corresponding predictions for p-p and pep experiments are, respectively, 0.707 {+0.011}{-0.013} and 0.644 {+0.011}{-0.013}. We derive upper limits to CPT violation in the weak sector by comparing reactor anti-neutrino oscillation parameters with neutrino oscillation parameters. We also show that the recent data disfavor at 91 % CL a proposed non-standard interaction description of solar neutrino oscillations.Comment: Added predictions for p-p and pep neutrino-electron scattering rate; publishe

    Global Analysis of Solar Neutrino Oscillations Including SNO CC Measurement

    Get PDF
    For active and sterile neutrinos, we present the globally allowed solutions for two neutrino oscillations. We include the SNO CC measurement and all other relevant solar neutrino and reactor data. Five active neutrino oscillation solutions (LMA, LOW, SMA, VAC, and Just So2) are currently allowed at 3 sigma; three sterile neutrino solutions (Just So2, SMA, and VAC) are allowed at 3 sigma. The goodness of fit is satisfactory for all eight solutions. We also investigate the robustness of the allowed solutions by carrying out global analyses with and without: 1) imposing solar model constraints on the 8B neutrino flux, 2) including the Super-Kamiokande spectral energy distribution and day-night data, 3) including a continuous mixture of active and sterile neutrinos, 4) using an enhanced CC cross section for deuterium (due to radiative corrections), and 5) a optimistic, hypothetical reduction by a factor of three of the error of the SNO CC rate. For every analysis strategy used in this paper, the most favored solutions all involve large mixing angles: LMA, LOW, or VAC. The favored solutions are robust, but the presence at 3 sigma of individual sterile solutions and the active Just So2 solution is sensitive to the analysis assumptions.Comment: 9 figures, higher resolution versions at http://www.sns.ias.edu/~jnb, added references and clarification

    Efectividad de la política monetaria en algunas economías latinoamericanas

    Get PDF
    El objetivo de este artículo es realizar estimaciones de un modelo keynesiano simple de equilibrio general Monacelli (2003) para caracterizar la efectividad y los mecanismos de transmisión de la política monetaria en países latinoamericanos. Se estiman los parámetros por medio de métodos bayesianos para seis países latinoamericanos. Para estos países existe poca evidencia hasta el momento de la utilización de métodos bayesianos en modelos DSGE, por lo que esta artículo constituye un aporte para el mejor entendimiento de las economías latinoamericanas, por medio de los cuales se establecen las diferencias existentes en el mecanismo de transmisión de la política monetaria, siendo esto debido a la heterogeneidad en los parámetros que caracterizan a las economías de la región.Economía Pequeña y Abierta, Métodos Bayesianos, Transmisión Política Monetaria.

    Shared neural representations of cognitive conflict and negative affect in the dorsal anterior cingulate cortex

    Get PDF
    Influential theories of dorsal anterior cingulate cortex (dACC) function suggest that the dACC registers cognitive conflict as an aversive signal, but no study directly tested this idea. In this pre-registered human fMRI study, we used multivariate pattern analyses to identify which regions respond similarly to conflict and aversive signals. The results show that, of all conflict- and value-related regions, only the dACC/pre-SMA showed shared representations, directly supporting recent dACC theories
    corecore